AI-Designed Protein Awakens Silenced Genes, One By One

by

By combining CRISPR technology with a protein designed with artificial intelligence, it is possible to awaken individual dormant genes by disabling the chemical "off switches" that silence them. Researchers from the University of Washington School of Medicine in Seattle describe this finding in the journal Cell Reports. Phys.Org reports: The new technique controls gene activity without altering the DNA sequence of the genome by targeting chemical modifications that help package genes in our chromosomes and regulate their activity. Because these modifications occur not in, but on top of genes, they are called epigenetic, from the Greek epi "over" or "above" the genes. The chemical modifications that regulate gene activity are called epigenetic markers. Scientists are particularly interested in epigenetic modifications because not only do they affect gene activity in normal cell function, epigenetic markers accumulate with time, contribute to aging, and can affect of the health of future generations as we can pass them on to our children.
[...]
In the new paper, [the researchers] show that by using this technique, they were able to block PRC2 and selectively turn on four different genes. They were also able to show they could transdifferentiate induced pluripotent stem cells to placental progenitor cells by simply turning on two genes. Finally, the researchers were able to show how the technique can be used to find the location of specific PRC2-controlled regulatory regions from where individual genes are activated. The location of many of these are unknown. In this case, they identified a promoter region -- called a TATA box -- for a gene called TBX18. Although current thinking is that these promotor regions are close to the gene, within in 30 DNA base pairs, they found for this gene the promoter region was more than 500 base pairs away.